Окружность девяти точек и прямая Эйлера
Рассмотрим произвольный треугольник. Теорема Эйлера об окружности девяти точек гласит: основания высот, середины сторон и середины отрезков, соединяющих ортоцентр — точку пересечения высот — с вершинами треугольника, лежат на одной окружности — окружности девяти точек.
Непрерывно изменяя исходный треугольник, получаем мультфильм.
При гомотетии с центром в ортоцентре треугольника и коэффициентом 1/2 описанная окружность треугольника переходит в окружность девяти точек. (Чтобы увидеть мультипликацию, обновите эту страничку, например, нажав кнопку F5 компьютера.)
При этой гомотетии центр описанной окружности переходит в центр окружности девяти точек. Следовательно, центр окружности девяти точек — середина отрезка, соединяющего ортоцентр треугольника с центром его описанной окружности.
При гомотетии с центром в точке пересечения медиан и коэффициентом -1/2 вершины треугольника переходят в середины противоположных сторон. Поэтому при этой гомотетии высоты переходят в серединные перпендикуляры, а ортоцентр — в центр описанной окружности. Это значит, что центр тяжести треугольника (точка пересечения его медиан) лежит на отрезке, соединяющем ортоцентр и центр описанной окружности, и расположена вдвое ближе к центру описанной окружности, чем к ортоцентру.
Таким образом, центр описанной окружности, центр тяжести, центр окружности девяти точек и ортоцентр лежат на одной прямой — прямой Эйлера.
Вот как меняется прямая Эйлера при движении вершин треугольника.
А вот так выглядят прямая Эйлера и окружность девяти точек, изображённые на одном рисунке.
И, наконец, мультфильм!